
Algorithm of Su

essives Restri
tionsLinda SmailMarne-la-Vall�ee UniversityFran
esmail�math.univ-mlv.frAbstra
tGiven a bayesian network relative to a set I of dis
rete random variables, we are interested in
omputing the probability distribution P (A=B), where A and B are two disjoined subsets ofI . The general idea of the algorithm of su

essives restri
tions is to manage the su

essions ofsummations on all random variables out of the target in order to keep on the target a stru
tureless 
onstraining than the Bayesian network, but whi
h allows saving in memory ; that is thestru
ture of Bayesian Network of Level Two.1 Introdu
tionGiven a bayesian network relative to a set (Xi)i2I of dis
rete random variables, we are interested in 
ompu-tation of the probability distribution of a subset A of random variables 
onditionally to another subset B,where A and B are two disjoined subsets of I . A

ording to Bayes theorem : P (xAjxB) = P (xA;xB)PxA P (xA;xB) thusto 
ompute this 
onditional probability we need to 
ompute the probability distribution of XA[B, whi
h we
alled \target". The general idea is to manage the su

essions of summations on all random variables Xi,for i 2 (I � (A [ B)) = A [ B.Our aim is to 
ompute P (xAjxB), for one target A, not as in many studies whi
h developed some e�e
tivealgorithms to 
ompute P (xijxB) for ea
h i 2 I , this makes the di�eren
e between our algorithm and the
lustering-based algorithms. In this algorithm we do not state on the target any parti
ular assumption in
onne
tion with the stru
ture of the bayesian network. The subset A 
an have more than one variable, andnot spe
ially variables whi
h belong to the same 
lique as in (Lauritzen, 1988) where the targets are 
liquesorganized in a stru
ture of a jun
tion tree. In other words, in (Lauritzen, 1988), we 
an 
ompute P (xAjxB)if A is a subset of variables of the same 
lique.2 Bayesian network of level twoWe 
onsider a probability PI of a �nite family (Xi)i2I , of random variables on a �nite spa
e 
I . Let I be apartition of I and let us 
onsider a dire
ted a
y
li
 graph G on I ; we say that there is a link from J 0 to J 00(where J 0 and J 00 are atoms of the partition I) if (J 0 ; J 00) 2 G. If J 2 I, we note p(J) the set of parents ofJ , that is the set of J 0 su
h that (J 0 ; J) 2 G.Let a(J) be the initial subset (an
estors) de�ned by J , in other words the set 
onsisting in J itself and theJ 00 su
h as there is a path in G from J 00 to J ; we 
an identify it with the union of all J 00 su
h that J 00 2 a(J).De�nition 1 : The probability PI is de�ned by the Bayesian network of level two (BN2), on I ,(I; G; (PJ=p(J))J2I), if for ea
h J 2 I, we have the 
onditional probability PJ=p(J), in other words theprobability of XJ 
onditioned by Xp(J) (whi
h, if p(J) = ;, is the marginal probability PJ ), su
h as :PI (xI ) = YJ2I PJ=p(J)(xJ=xp(J)):An usual Bayesian network (said of level one : BN1) is a parti
ular 
ase of BN2, with the partition of Iinto singletons.
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6 7Figure 1: Example of a Bayesian network of level twoDe�nition 2 : Let 
d(J) be the set (possibly empty) of the 
lose des
endants of J , in other words the
hildren of J and, if there are any out of the 
hildren themselves, the verti
es lo
ated on a path between Jand one of his 
hildren.
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d(1) = f2; f3; 4g; 6g, whi
h we 
an write also : 
d(1) = f2; 3; 4; 6g.3 Algorithme of su

essives restri
tionsLet (I;G; (Pi=p(i))i2I ) be a bayesian network. Given a subset A of I , known as \target", we 
onsider theproblem of 
omputing the probability distribution of (Xi)i2A = XA. To solve this problem, we suggest analgorithm said algorithm of su

essives restri
tions. The general idea is to manage the summations that wehave to do relatively to the random variables X` for ` 2 A (A = I �A).3.1 Prin
ipele of the algorithmeGiven a bayesian network (I;G; (Pijp(i))i2I) and a subset A of I , the general idea of the algorithm ofsu

essive restri
tions is to build a sequen
e of subsets (I0; : : : ; I`) with ` = Card (I � A), and for ea
h0 � s � ` a stru
ture of bayesian network of level 2 on Is, noted Rs = (Is; Gs; (PJjp(J))J2Is , whi
h de�nesPIs , probability ditribution of XIs = (Xi)i2Is , su
h that :1. I0 is the initial network (so I0 = I).



2. Ea
h element of Is whi
h 
ontains an element of A is a singleton.3. On
e the algorithm is performed, I` = A and the probability distribution of (Xi)i2A 
an be 
omputedsimply by produ
t of the 
onditional probabilities in the bayesian network of level two obtained on I` .
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Figure 3: (a) : Example of BN2. (b) : BN2 resulting after summation over 6 : E6 = f7; 8; 9; 10; 11g.Now let's spe
ify the general step of this algorithm : we start with a BN2, on L � I , R =(I; G; (PJ=p(J))J2I), de�ning PL, where L = [J2I J ; we will obtain at the exit a BN2, on L0 = L � fig,R0 = (I 0; G0; (PJ=p(J))J2I0), de�ning PL0 . We 
hoose a variable i of A \ L ; a

ording to what pre
edes, thesingleton i belongs to I ; this 
hoi
e is made in su
h a way that i has no des
endant in A. Than the BN2 R0has for verti
es the atoms of the partition I 0, whi
h are :1. the set of 
lose des
endants of i in R, whi
h we denote Ei (Ei = 
d(i)),2. all the atoms of I other than i and those in Ei .The graph G0 results from the graph G in the following way :1. we delete the links (for G) relative to i and to the elements of Ei,2. we keep all other links of G,3. we introdu
e to Ei a set of parents, p0(Ei), whi
h in
ludes : all parents of i in G and all parents ofverti
es belonging to the 
lose desendants of i, others than i or those in Ei itself.4. we introdu
e as 
hildren to Ei all 
hildren of verti
es of R belonging to Ei, others than those in Eiitself.



The probabilisti
 data asso
iated to R0 
an be 
omputed from those asso
iated to R in the following way :1. we 
onserve the probability, 
onditionally to his parents, for ea
h vertex su
h that the passage from Rto R0 
hanges neither itself nor his parents (in other words, ea
h vertex other than i, those in Ei andthe 
hildren of those in Ei);2. for ea
h 
hild J of Ei (in G), his probability, 
onditionally to his parents, is preserved by substitutionof Ei to the set of the parents of J (in G) whi
h belongs to Ei, and we 
onserve the information thatonly these variables intervene in p0J=Ei .3. we 
reate the probability of Ei 
onditionally to p0(Ei), whi
h 
an be 
omputed owing to the followingformulaPEi=p0(Ei)(xEi=xp0(Ei)) = Xxi2
i h � YJ2Ei PJ=p(J)(xJ=xp(J)) � Pi=p(i)(xi=xp(i)) i:Proof :To simplify the notation, we will note Pi for Pxi2
i and, for ea
h subset B = fb1; : : : ; bmg of L,PB for Pxb12
b1 : : : Pxbm2
bm ; we will omit to write the variables (for example we write PJ=p(J) forPJ=p(J)(xJ=xp(J))). The various obje
ts intervening in this proof may be visualized on the example given in�gure 3 (a).The 
omputation of PEi=p0(Ei) 
an be done by using only verti
es in a(Ei) the initial subset de�ned by Ei,whi
h in
ludes p0(Ei) by 
onstru
tion ; we de
ompose a(Ei) a

ording to the partition (Ei; fig; p0(Ei); Gi),where a�p0(Ei)� = p0(Ei) [Gi. ThenPEi[p0(Ei) = Xi XGi h � YJ2Ei PJ=p(J)� Pi=p(i) � Yk2p0(Ei) Pk=p(k)� � Yh2Gi Ph=p(h) � i:We noti
e that the index i is present only in �QJ2Ei PJ=p(J)� Pi=p(i) whereas all the ` in Gi may be presentonly in � Qk2p0(Ei) Pk=p(k)� � Qh2Gi Ph=p(h) � soPEi[p0(Ei) = nXi h � YJ2Ei PJ=p(J)� Pi=p(i)io nXGi h � Yk2p0(Ei) Pk=p(k)� � Yh2Gi Ph=p(h)� i o:Sin
e Pp0(Ei) = PGi h� Qk2p0(Ei) Pk=p(k) � � Qh2Gi Ph=p(h)� i, we getPEi=p0(Ei) = Xi h � YJ2Ei PJ=p(J)� Pi=p(i)i:Referen
esFinn Jensen (1999). An Introdu
tion to Bayesian Networks. UCL Press.Pearl, J. (1986). Fusion propagation and stru
turing in belief networks. Arti�
ial Intelligen
e 29 (3),241{288.Ste�en Lauritzen, David Spiegelhalter (1988). Lo
al Computation with Probabilities on Graphi
alStru
tures and their Appli
ation to Expert Systems. Pro
eedings of the Royal Statisti
al So
iety,Series B 50 (2).


